Back to Browse Journals » Therapeutics and Clinical Risk Management » Volume 6

Tenofovir-associated bone density loss

Authors Iwen F Grigsby, Lan Pham, Louis M Mansky, et al

Published Date December 2009 Volume 2010:6 Pages 41—47

DOI http://dx.doi.org/10.2147/TCRM.S8836

Published 24 December 2009

Iwen F Grigsby1,2,3,4,5, Lan Pham1,2,4, Louis M Mansky3,4,5, Raj Gopalakrishnan3,4, Kim C Mansky1,2,4

1Division of Orthodontics, 2Department of Developmental and Surgical Sciences, 3Department of Diagnostic and Biological Sciences, 4MinnCResT Program, School of Dentistry, and 5Institute for Molecular virology, Academic Health Center, University of Minnesota, Minneapolis, MN, USA

Abstract: Clinical observations have revealed a strong correlation between loss of bone density in HIV-infected individuals, particularly in conjunction with the antiretroviral drug tenofovir, a nucleotide analog that inhibits HIV reverse transcriptase. The most compelling correlations have been observed in clinical studies involving young children and adolescents. These observations strongly suggest that bone density is being affected during active bone growth and development, implicating a role for tenofovir in bone loss. Here we discuss the literature and potential mechanisms for how tenofovir-associated bone loss may arise, which likely involves perturbation of cellular DNA synthesis and gene expression. Elucidation of the mechanism(s) involved in tenofovir-mediated bone loss will help in developing adjuvant therapies to reduce tenofovir-associated bone density loss.

Keywords: tenofovir, osteoblast, osteoclast, dysfunction, PMPA, renal

Download Article [PDF] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Other article by this author:

Aging, human immunodeficiency virus, and bone health

Kim C Mansky

Clinical Interventions in Aging 2010, 5:285-292

Published Date: 14 September 2010

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility

Frank KJ, Westedt U, Rosenblatt KM, Hölig P, Rosenberg J, Mägerlein M, Fricker G, Brandl M

International Journal of Nanomedicine 2012, 7:5757-5768

Published Date: 12 November 2012

Enhanced absorption of hydroxysafflor yellow A using a self-double-emulsifying drug delivery system: in vitro and in vivo studies

Lv LZ, Tong CQ, Lv Q, Tang XJ, Li LM, Fang QX, Yu J, Han M, Gao JQ

International Journal of Nanomedicine 2012, 7:4099-4107

Published Date: 30 July 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Corrigendum: Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

Espandar L, Sikder S, Moshirfar M

Clinical Ophthalmology 2011, 5:159-160

Published Date: 6 February 2011

Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

Ladan Espandar, Shameema Sikder, Majid Moshirfar

Clinical Ophthalmology 2011, 5:65-70

Published Date: 10 January 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010