Back to Browse Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Understanding improved osteoblast behavior on select nanoporous anodic alumina

Authors Ni S, Li C, Ni S, Chen T, Webster TJ

Published Date July 2014 Volume 2014:9(1) Pages 3325—3334

DOI http://dx.doi.org/10.2147/IJN.S60346

Received 9 January 2014, Accepted 22 February 2014, Published 10 July 2014

Siyu Ni,1 Changyan Li,1 Shirong Ni,2 Ting Chen,1 Thomas J Webster3,4

1College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, People’s Republic of China; 2Department of Pathophysiology, Wenzhou Medical University, Wenzhou, People’s Republic of China; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA; 4Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract: The aim of this study was to prepare different sized porous anodic alumina (PAA) and examine preosteoblast (MC3T3-E1) attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm) were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05). Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry) through an anodization process to improve osteoblast density, and, thus, should be further studied as a bioactive interface for orthopedic applications.

Keywords: nanostructure, adhesion, proliferation, preosteoblast, orthopedics

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at: http://www.dovepress.com/permissions.php

Readers of this article also read:

Ocular surface disease in posttrabeculectomy/mitomycin C patients

Lam J, Wong TT, Tong L

Clinical Ophthalmology 2015, 9:187-191

Published Date: 29 January 2015

Overendocytosis of gold nanoparticles increases autophagy and apoptosis in hypoxic human renal proximal tubular cells

Ding F, Li Y, Liu J, Liu L, Yu W, Wang Z, Ni H, Liu B, Chen P

International Journal of Nanomedicine 2014, 9:4317-4330

Published Date: 12 September 2014

Toxicology of antimicrobial nanoparticlesfor prosthetic devices

Nuñez-Anita RE, Acosta-Torres LS, Vilar-Pineda J, Martínez-Espinosa JC, de la Fuente-Hernández J, Castaño VM

International Journal of Nanomedicine 2014, 9:3999-4006

Published Date: 20 August 2014

Nanopharmacology in translational hematology and oncology

Tomuleasa C, Braicu C, Irimie A, Craciun L, Berindan-Neagoe I

International Journal of Nanomedicine 2014, 9:3465-3479

Published Date: 22 July 2014

Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging

Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M

International Journal of Nanomedicine 2014, 9:3347-3361

Published Date: 10 July 2014

Lubricin as a novel nanostructured protein coating to reduce fibroblast density

Aninwene II GE, Yang Z, Ravi V, Jay GD, Webster TJ

International Journal of Nanomedicine 2014, 9:3131-3135

Published Date: 25 June 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Influence of PEGylation and RGD loading on the targeting properties of radiolabeled liposomal nanoparticles

Rangger C, Helbok A, von Guggenberg E, Sosabowski J, Radolf T, Prassl R, Andreae F, Thurner GC, Haubner R, Decristoforo C

International Journal of Nanomedicine 2012, 7:5889-5900

Published Date: 27 November 2012

Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder

Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, Zargar M

International Journal of Nanomedicine 2012, 7:5603-5610

Published Date: 25 October 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012